WMJ-3

5G PA Implementation and Integration Aspects

Kamal Samanta \& Chris Clifton

Semiconductor and Electronic Solutions, Sony Europe

Agenda

$>$ Introduction
$>$ 5G mmWave Link Budget Requirements \& Architectures
$>$ mmW Integration Challenges and Techniques
$>$ Techniques for addressing the Mobile Device Power Consumption/Efficiency
$>$ Prototype Front-End Module with single PA
> Summary

What Will 5G Be?

- Highly consistent, ubiquitous data rate and capacity
- Ultra low latency
- Ultra high reliability/resilience
- Ultra low cost, high coverage and reliability for M2M services
- Lower energy in infrastructure and terminals
- Architecture for a rapid service launch, support, operation and maintenance
- Scalability for billions of devices
- Utilise all available spectrum

Nokia 5G masterplan_white_paper

5G Communications: People \& Things

Creation of Sense of Being through ultra high bit rate and low latency

5G is about Communication, Storage, Processing...

\qquad

IE日込

5G mmWave Link Budget Requirements \& Architectures

Required Rx sensitivity at BS receiver	-80dBm (estimate)
BS RX and UE TX Antenna Gains:	
BS Max Antenna element gain	6 dBi
BS RX Max antenna array (64) gain	24 dB
Total BS Avg Array Gain over +/-30	28 dB (2dB degradation)
UE TX Max Antenna Element Gain	6 dBi
UE TX Max Antenna Array (8) Gain	9 dB
Total UE S Avg Array Gain over +/-90	10 dB (5dB degradation)
Total average Antenna Gains	38 dB
Propagation Attenuations	
Estimated Basic Pathloss	133dB (250m distance)
Fading/other margins	6 dB
Rain Attenuation	$3.75 \mathrm{~dB}(15 \mathrm{~dB} / \mathrm{Km})$
Total Propagation attenuations	142.75 dB
Total UE TX to each ant elemt: RX BS sensty - BS \& UE Ant G + Prop Attn	+24.75dBm
UE average TX EIRP	+34.75dBm
Power req to each UE TX antenna elemt (Total UE TX power -9dB)	+15.75dBm
TX losses between PA and Antenna elemt (TX RF Fltr, SW, other losses)	3 dB
Required PA Output Power	+18.75dBm
Peak PA Output Power (Assumed PA backoff of 6 dB)	+24.75dBm

IEEE Ral

UE Architectures

WMJ -3

Beamforming/Module Architecturestum
 Beamforming/Module Architectures

mmWave operation is unattractive.. but Beamforming provides a solution

Analogue Beamforming Array

Hybrid Beamforming Array

Digital Beamforming Array
$\sim 100 \mathrm{~m}+$ cell sizes possible with 1 10GBit/sec data-rates

IMS2016 Ampleon, EU Flex5Gware project

Possible mmW Analogue Array Architectures (showing TX path)

Individual PAs for each antenna element

One Power Amplifier (PA)

UP Link Budget (UE Power):

*BS receiver sensitivity: -80 dBm; *BS and UE array size: 64 (8×8) and 8 (4×2)
*UE Peak PA output Power: ~ 25 dBm (average power 19dBm =6dB back-off assumed)

* This is an example power level based on assumptions including antenna gain, coverage (250 m) etc.

TX/RX Chain Approach

DPDT Switch

Analogue Array 1 PA Architecture Including TX and RX Filters and LNA

Architecture	DC Power Consumption - best CMOS/SOI PA 6dB back-off, $\eta=16 \%$	DC Power Consumption - best published PA 6dB back-off, $\eta=22 \%$	```Power Consumption - Eff. enhanced PA, \(\eta=\) 32\%```	Lowest heat dissipation (DC-RF power)
Multiple TX/RX	3.7W	2.7W		2.1W
TX/RX (2.5dB post PA IL to PS and related aspects)	5.3W	3.8W	2.6W	1.8W

TX/RX Approach viable with efficiency enhanced single PA and low loss PS (<2dB)

Front-End Critical Components :

For performance, size and power consumption

- ADC/DAC
- Up/Down Converters
- Antenna Array and related technologies
- Filters
- Phase Shifters
- LNA
- Switch
- Power Amplifier

eetindia

Connecting Minds. Exchanging Ideas.

mmW Integration Challenges and Techniques

The Implementation Challenge

For a receiver with 4 antennas，the power consumed by this front end at muwave would be 2W！！！

Power consumed by a 2.4 $\mathrm{GHz}, 20 \mathrm{MHz} \mathrm{BW}$ front end would be 120 mW

High Power Consumption for mmW
＂R．Heath．N．Gonzalez－Prelicic．S．Rangan．A．Sayeed．W．Roh＂Overview of signal processing techniques for millimeter wave MIMO systems＂，under review IEEEEJSTSP 2015
－
IE日 スベ

The Thermal and Electromagnetic Challenge

Areas for Cooling and for Array

30 CHz	Total diss. [W]	Cooling Area [mmi]	Array Sine [mm^{2}]
Analog BF	3	1200	400
Digital BF	4.5	1500	400
45 CHz	Total divs. [W]	Cooling Area $\left[\mathrm{mm}^{2}\right]$	Array Sine $\left[\mathrm{mm}^{2}\right]$
Analog BF	4	1600	178
Digital BF	5.5	2200	178
73 CHz	Total diss. [W]	Cooling Area [mm^{2}]	Array Sine [mm^{2}]
Analog BF	11.5	4600	68
Digital BF	13	5200	68

- Dissipation estimated for a 4×4 antenna array with 20 dBm peak $\mathrm{P}_{\text {out }}$ per antenna
- Cooling capacity is 1 W per $4 \mathrm{~cm}^{2}$ to enable passive cooling

The Extreme Measurement Challenge

- mmWave: Wavelength small -big measurement uncertainties can easily result from physical distances and practical calibration constraints
- 5G RF bandwidths will exceed 1GHz: all commercial equipment solutions struggling to accommodate this requirement
- Modulation constellations very complex in order to provide the ultra-high data-rates. Measurement of constellation errors extremely challenging

[^0]
Challenges of Wideband PA

Connecting Minds. Exchanging Ideas.
> Difficulties are to simultaneously achieve high P1dB power across a wideband bandwidth, and high efficiency and linearity for high PAPR.
> Inherent slow-compression (for GaN), yet achieving high P1dB power
> Class of operation and thermal loads
> Memory/ hysteresis effect and modulation recovery
> Efficiently dissipating the ultra-high heat flux generated at microscale gate fingers - electrical and mechanical consideration for interfacing and heat spreading/packaging materials

Typical G-S Capacitance \& P1dB Power

>Slow gain-compression (for GaN)

Power Performance of AIGaN/GaN
PHEMT
$>$ P1dB far away from Psat
>PAE maximum closed to Psat
> P1dB power vaguely reflects GaN's power capability
K. K. Samanta, "Packaging of Wideband High Power GaN Amplifiers", IEEE IMS2015, Phoenix, May 2015.

Die-Based GaN PA Integration

MoCu Carrier

* Parasitic reduced

MoCu Shim Under the Device

* Additional Parasitic is introduced (including inductance)
*High freq response is affected- oscillation
K. K. Samanta, "Wideband PA and Packaging: Part-2", IEEE Microwave Magazine, Nov, 2016.

Techniques for Addressing the Mobile Device Power Consumption/Efficiency

The Importance of PA Device Technology The Importance of PA Device Technology Choices

Pout Vs Frequency

Efficiency Vs Frequency
Skyworks,2016 IMS WSB

The Importance of Device Technology Choices

Psat Vs Frequency

Frequency $[\mathrm{GHz}] \quad$ solid state amplifer data from open literature

PAE Vs Frequency

PA Candidate Approaches:

- ET (Envelope Tracking), EER.
- Doherty
- LINC/Chireix (outphasing)
- Use of above with/without DPD (Digital Predistortion) or APD (Analogue Pre-distortion)
- Class S?

Envelope Tracking：Used for 4G But More ${ }^{\text {OMS }}$ Challenging for 5G

One PA to rule them all？
＞Supply modulation techniques such as ET become increasingly difficult beyond 20 MHz
＞May be practically limited to 50－ 100 MHz in terms of any efficiency improvement
－Sony Semiconductor prototype GaAs JPHEMT broadband output stage
－Measured using Nujira ETPA characterization system
－$>55 \%$ final stage efficiency with LTE waveform from 700 MHz to 2500 MHz
－25RB QPSK
－$>-36 \mathrm{dBc}$ ACLR
－ $27-28 \mathrm{dBm}$ average Pout

Doherty: Proven But Size \& Complexity Overhead

General Architecture of the Doherty Power Amplifier and Efficiency/output Power Characteristic
[mwrf.com, Saffian \& Dunn] [Vittorio Camarchia , Marco Pirola and Roberto Quaglia, Sept 2014]
드ㄹㅡㅡㅊ

Out Phasing PA: Also Size \& Complexity Overheads

Chireix/Outphasing PA and Efficiency/Output Power Characteristic
[Napieralska et al][schie et al]

Adaptive Bias Control

Adaptive Gate Bias Control:
1.7-2.7dB higher output power with 1.3-8.5\% higher efficiency achieved

DPD Likely to Continue to Play Important Role

Connecting Minds. Exchanging Ideas.

Channel BW $>100-300 \mathrm{MHz}$ gets more challenging even for test equipment

ARCHITECTURE				
Configuration Carrier frequency 1.8 GHz Vds $=3.5 \mathrm{~V}$	ACLR (dBc)		Average output power (dBm)	Average Drain efficiency (\%)
	Lower	Upper		
20 MHz LTE memory-less DPD	36.6	37.3	24.5	30.4
20 MHz LTE without DPD	36.1	41.4	21.2	20.2

AUS, Sony, Bristol IEEE 2016
http://www.keysight.com/main/measurement solution
IE日E AN

Despite Limitations of an Analogue olms Approach, APD Shows Good Promise

A Typical Transceiver: Integration of III-V CS and Si Devices

Provides Benefits from Both摂high frequency performance of CS米complex digital/control functionality and cost benefit of Si

Challenges - Interdisciplinary

Connecting Minds. Exchanging Ideas.
*Multilayer fabrication with fine geometry and accurate alignment
*Metallization with smooth and well-defined surface and near vertical edge
*Compatible coefficient of thermal expansion (CTE)

* Novel material- better electrical, microwave and thermal properties at a low cost
*Precise IC/SMT mounting pedestal or pocket formation
* Novel circuit design and thermal managements techniques
* Multiphysics analysis/modelling : SC with metal and dielectric; mechanical, thermal, optical, in addition to electrical and microwave/mmW

Co-simulation of package, circuit and device (SC) - including circuit, EM and thermal analysis.

mmWave Highly Integrated Module : Afighs Accuracy Multiphysics Design Essential

K. K. Samanta ,.. "Multilayer ... SoP Comp.. mmW and Beyond" IEEE Mw Magazine, Jan 2016

Attenuation (frequency of operation) and normalised impedance for fundamental ($T E_{10}$) and first order mode ($T E_{20}$) of substrate integrated waveguides:
Cavity width (a) of $2.15 \mathrm{~mm}, 3.16 \mathrm{~mm}$ and 0.85 mm , Dielectric heights (h) of $60 \mu \mathrm{~m}$

Solutions: Advanced Multilayer/3DOLIMS Multichip and Heterogeneous Integration

K. K. Samanta, IEEE Microwave Magazine, vol. 18, no. 2, 2017.

Relative Advantage and Disadvantage IMS of Multilayer Integration Techniques

MCM/SOP Technology	Advantages	Disadvantages
Laminates: PCB/Organic material/LCP (MCM-L)	- Low cost and established infrastructure - Easy to repair/re-work - Low ε_{r} - for antennas - Parallel Processing - Availability of new low loss organic/LCP	- High moisture sensitivity - Low wiring density - High CTE - CTE mismatch with die Low TC - Difficult to integrate passives
Ceramic (LTCC) (MCM-C)	- Good RF, mechanical and thermal - Easy integration of passives - Real 3D integration/packaging capability - A range of layer properties - Radiation hardness, hermetic packaging - CTE matches with semiconductor - High resolution and trench via - PI-TF process	- Shrinkage of substrate (zero-shrinkage process) - High dielectric constant - More expansive than laminates - Longer lead time than laminates - Difficult fine conductor or trenchfilled metal-wall
IPD (MCM-D)	- High geometric resolution and wiring density - Low dielectric constant - Easy integration of passives	- Expensive process - Limited number of layers - Difficult to repair or rework

Prototype 28 GHZ Front-End Module (FEMV1) With Single PA

Possible Front-End Architectures with Filters

Basic Block Diagram of a Front－End Module（FEMV1）

Block Diagram of FEMV1

Laminate／PCB	RO4350B
Dielectric Const	3.66
TanD	0.0037
CTE（ppm $/{ }^{\circ} \mathrm{C}$ ）	+40
TC（W／m．K）	0.69
Min thickness （um）	101

Filters Requirements and Constrainsivs
 Filters Requirements and Constrains

>Specification of a filter is governed by the system specs and achievable specs of converts; harmonics from PA and antenna module.
> Basic Requirements:

* Rejection of harmonics and spurious in Tx channel
* Rejection of out of band unwanted signals in Rx channel : around 60 GHz (WLAN/WiFi) and $<10 \mathrm{GHz}$ (Cellular/WiFi)
> Difficulties:
* High dielectric, ohmic and radiation losses at mmW
* Maintaining low IL loss of a filter across a wideband: meeting NF for Rx and o/p power for Tx

Low pass filter : Photograph and Measured Response

Test Results:
Adapter loss $=0.2 \mathrm{~dB}$ + I/O Connector + line loss : ~ 1.1 dB

Filter Loss:
< 1dB@28GHz

Band/High Pass Filter : Photograph and Measured Response

High pass filter

Test Results:
Adapter + I/O
Connector + line loss: ~ 1.3 dB

Filter Loss:
$<2 \mathrm{~dB}$ @28GHz

Photograph and Layout of SPDT SW

SPDT Switch: Measured S-

Parameters RFc to RF1 high loss \& RFc to RF2 low loss

Includes line losses for modular approach

Photograph of 28 GHz Front-End

Module (with Modular Approach)

AR AR

Measured TX Gain/IL: 20 to 35 GHz \& 0.1 to 67 GHz

Includes line losses for modular approach

RX insertion loss, 0.1 to 67 GHz \& Return loss

Includes line losses for modular approach

Layout and Photograph of PA

Layout of PA

Photograph of PA

IE日E AN

Measured Performance of PA

Measured Performance of PA

Performance of PA with Wideband DPD

Conclusions

$>5 \mathrm{G}$ vision for Applications and Use Cases Taking Shape
$>$ 5G mmWave Link Budget \& Possible Architectures
$>$ A Lot of Scope for R\&D Activities Relating to Front-End Implementation: novel PA topology, low loss PS and SW, efficient and low cost integration technique, compact size yet effective thermal management, innovative multiphysics analysis and modelling
>PA Techniques for Addressing Power Consumption/Efficiency
$>$ Measured Performance for the First Prototype FEM with Modular Approach and Single PA

THANK You yoeyse

<WS/SC ID>

[^0]: Many requirements beyond current commercial equipment capabilities and calibration techniques crucial

