

WMJ-3

5G PA Implementation and Integration Aspects

Kamal Samanta & Chris Clifton

Semiconductor and Electronic Solutions, Sony Europe

Agenda

Introduction

- 5G mmWave Link Budget Requirements & Architectures
- mmW Integration Challenges and Techniques
- Techniques for addressing the Mobile Device Power Consumption/Efficiency
- Prototype Front-End Module with single PA
 Summary

What Will 5G Be?

- Highly consistent, ubiquitous data rate and capacity
- Ultra low latency
- Ultra high reliability/resilience
- Ultra low cost, high coverage and reliability for M2M services
- Lower energy in infrastructure and terminals
- Architecture for a rapid service launch, support, operation and maintenance
- Scalability for billions of devices
- Utilise all available spectrum

Nokia 5G masterplan_white_paper

Catch the Wave

HAWAI'I 5G

5G Communications: People & Things

Immersive Reality

Creation of Sense of Being through ultra high bit rate and low latency

WMJ -3

5G mmWave Link Budget Requirements & Architectures

Analogue Beamforming Array [IMS2016, Flex5G Project]

Analogue beamforming array on mobile device : estimated link budget for 250m coverage NLOS

Due to the finite number of antenna elements, a relatively high output power/element is required with high efficiency in order to avoid thermal issues

Required Rx sensitivity at BS receiver	-80dBm (estimate)
BS RX and UE TX Antenna Gains:	
BS Max Antenna element gain	6dBi
BS RX Max antenna array (64) gain	24dB
Total BS Avg Array Gain over +/-30°	28dB (2dB degradation)
UE TX Max Antenna Element Gain	6dBi
UE TX Max Antenna Array (8) Gain	9dB
Total UE S Avg Array Gain over +/- 90°	10dB (5dB degradation)
Total average Antenna Gains	38dB
Propagation Attenuations	
Estimated Basic Pathloss	133dB (250m distance)
Fading/other margins	6dB
Rain Attenuation	3.75dB (15dB/Km)
Total Propagation attenuations	142.75dB
Total UE TX to each ant elemt: RX BS	+24.75dBm
sensty – BS & UE Ant G + Prop Attn	
UE average TX EIRP	+34.75dBm
Power req to each UE TX antenna	+15.75dBm
elemt (Total UE TX power -9dB)	
TX losses between PA and Antenna	3dB
elemt (TX RF Fltr, SW, other losses)	
Required PA Output Power	+18.75dBm
Peak PA Output Power (Assumed PA	+24.75dBm
backoff of 6dB)	

ARFTG

UE Architectures

mmWave operation is unattractive.. but Beamforming provides a solution

Possible mmW Analogue Array Architectures (showing TX path)

Individual PAs for each antenna element

One Power Amplifier (PA)

UP Link Budget (UE Power):

- *BS receiver sensitivity: -80 dBm; *BS and UE array size: 64 (8x8) and 8 (4x2)
- *UE Peak PA output Power: ~ 25 dBm (average power 19dBm =6dB back-off assumed)

* This is an example power level based on assumptions including antenna gain, coverage (250 m) etc.

TX/RX Chain Approach

ARFTG

DPDT Switch

Analogue Array 1 PA Architecture Including TX and RX Filters and LNA

Architecture	DC Power Consumption - best CMOS/SOI PA 6dB back-off, η =16%	DC Power Consumption - best published PA 6dB back-off, η =22%	Power Consumption – Eff. enhanced PA, η = 32%	Lowest heat dissipation (DC-RF power)
Multiple TX/RX	3.7W	2.7W		2.1W
TX/RX (2.5dB post PA IL to PS and related aspects)	5.3W	3.8W	2.6W	1.8W

TX/RX Approach viable with efficiency enhanced single PA and low loss PS (<2dB)

Front-End Critical Components :

For performance, size and power consumption

- ADC/DAC
- Up/Down Converters
- Antenna Array and related technologies
- Filters
- Phase Shifters
- LNA
- Switch
- Power Amplifier

mmW Integration Challenges and Techniques

The Implementation Challenge

High Power Consumption for mmW

* R. Heath, N. Gonzalez-Prekic, S. Rangan, A. Sayeed, W. Roh "Overview of signal processing techniques for millimeter wave MIMO systems", under review IEEEE JSTSP 2015

The Thermal and Electromagnetic Challenge

ARFTG

Areas for Cooling and for Array

30 GHz	Total diss. [W]	Cooling Area [mm²]	Array Size [mm²]
Analog BF	3	1200	400
Digital BF	4.5	1800	400
45 GHz	Total diss. [W]	Cooling Area [mm²]	Array Size [mm²]
Analog BF	4	1600	178
Digital BF	5.5	2200	178
73 GHz	Total diss. [W]	Cooling Area [mm²]	Array Size [mm ²]
Analog BF	11.5	4600	68
Digital BF	13	5200	68

- Dissipation estimated for a 4×4 antenna array with 20 dBm peak Pout per antenna
- Cooling capacity is 1 W per 4 cm² to enable passive cooling

Dense Array and Passive Cooling

Thermal simulation, measurement & design required

0.2

ent (A)

5-0.2

ARÉŤC

The Extreme Measurement Challenge

- mmWave: Wavelength small –big measurement uncertainties can easily result from physical distances and practical calibration constraints
- 5G RF bandwidths will exceed 1GHz: all commercial equipment solutions struggling to accommodate this requirement
- Modulation constellations very complex in order to provide the ultra-high data-rates. Measurement of constellation errors extremely challenging

Many requirements beyond current commercial equipment capabilities and calibration techniques crucial

WMJ -3

- Difficulties are to simultaneously achieve high P1dB power across a wideband bandwidth, and high efficiency and linearity for high PAPR.
- Inherent slow-compression (for GaN), yet achieving high P1dB power
- Class of operation and thermal loads
- Memory/ hysteresis effect and modulation recovery
- Efficiently dissipating the ultra-high heat flux generated at microscale gate fingers - electrical and mechanical consideration for interfacing and heat spreading/packaging materials

Typical G-S Capacitance & P1dB Power

- >Slow gain-compression (for GaN)
- P1dB far away from Psat
- > PAE maximum closed to Psat
- > P1dB power vaguely reflects GaN's power capability

K. K. Samanta, "Packaging of Wideband High Power GaN Amplifiers", IEEE IMS2015, Phoenix, May 2015,

Catch the Wave

HAWAI'I 5,G

PHEMT

Die-Based GaN PA Integration

Techniques for Addressing the Mobile Device Power Consumption/Efficiency

The Importance of PA Device Technology Choices

Pout Vs Frequency

Efficiency Vs Frequency

Skyworks,2016 IMS WSB

The Importance of Device Technology Choices

PA Candidate Approaches:

- ET (Envelope Tracking), EER.
- Doherty
- LINC/Chireix (outphasing)
- Use of above with/without DPD (Digital Predistortion) or APD (Analogue Pre-distortion)
- Class S?

- Supply modulation techniques such as ET become increasingly difficult beyond 20MHz
- May be practically limited to 50-100MHz in terms of any efficiency improvement

One PA to rule them all?

- Sony Semiconductor prototype GaAs JPHEMT broadband output stage
- Measured using Nujira 40 ETPA characterization system 30
- >55% final stage efficiency with LTE waveform from 700 MHz to 2500 MHz
 - 25RB QPSK

Catch the Wave!

- >-36 dBc ACLR
- 27-28 dBm average Pout

ARFTG

22/04/2013

HAWAI'I 5

Doherty: Proven But Size & Complexity Overhead

General Architecture of the Doherty Power Amplifier and Efficiency/output Power Characteristic

[mwrf.com, Saffian & Dunn] [Vittorio Camarchia , Marco Pirola and Roberto Quaglia, Sept 2014]

Out Phasing PA: Also Size & Complexity Overheads

Chireix/Outphasing PA and Efficiency/Output Power Characteristic

Adaptive Bias Control

Adaptive Gate Bias Control:

1.7-2.7dB higher output power with 1.3-8.5% higher efficiency achieved

DPD Likely to Continue to Play Important Role

ARFTG

Channel BW >100-300MHz gets more challenging even for test equipment

Good 4G Results with DPD

Double Cascode Output Stage

SIMULATION RESULTS OF DIGITAL PRE-DISTORTION APPLIED TO THE PA

ARCHITECTURE				
Configuration Carrier frequency 1.8GHz	ACLR (dBc)		Average output power (dBm)	Average Drain efficiency (%)
Vds=3.5V	Lower	Upper		
20 MHz LTE memory-less DPD	36.6	37.3	24.5	30.4
20 MHz LTE without DPD	36.1	41.4	21.2	20.2

Over-sampling ~3-5 x BW

AUS, Sony, Bristol IEEE 2016

http://www.keysight.com/main/measurement solution

WMJ -3

Despite Limitations of an Analogue Approach, APD Shows Good Promise Gain Bias Gain Gain Gain Expansion Networks **Output Stage Driver Stage** + P_{in} PAE $\rightarrow P_{in}$ $\rightarrow P_{in}$ **Power Amplifier** Linerized PA - Pre-distortion Linearizer L7 L4 C1 L3 m 20 Matching ACPR without Linearizer Networks

83

82

28GHz CMOS PA: Seyed Mohammad Kashfi; Supervisor: L. Albasha

Figure 53. ACPR Comparison

ARFTG

WMJ -3

A Typical Transceiver: Integration of III-V CS and Si Devices

K. K. Samanta, IEEE Microwave Magazine, vol. 18, no. 2, 2017

Challenges – Interdisciplinary

- Multilayer fabrication with fine geometry and accurate alignment
- Metallization with smooth and well-defined surface and near vertical edge
- Compatible coefficient of thermal expansion (CTE)
- Novel material- better electrical, microwave and thermal properties at a low cost
- Precise IC/SMT mounting pedestal or pocket formation
- Novel circuit design and thermal managements techniques
- Multiphysics analysis/modelling : SC with metal and dielectric; mechanical, thermal, optical, in addition to electrical and microwave/mmW
- Co-simulation of package, circuit and device (SC) including circuit, EM and thermal analysis.

mmWave Highly Integrated Module : High Accuracy Multiphysics Design Essential

HAWAI'I 5 G Catch the Wave!

K. K. Samanta ,.. "Multilayer ... SoP Comp.. mmW and Beyond" IEEE Mw Magazine, Jan 2016

Attenuation (frequency of operation) and normalised impedance for fundamental (TE_{10}) and first order mode (TE_{20}) of substrate integrated waveguides:

Cavity width (a) of 2.15 mm, 3.16 mm and 0.85 mm, Dielectric heights (h) of 60 µm

Device-2

Wafer-2

Device-1

Wafer-1

InP/HBT

Chiplet

NMOS

Relative Advantage and Disadvantage

MCM/SOP Technology	Advantages	Disadvantages
Laminates: PCB/Organic material/LCP (MCM-L)	 Low cost and established infrastructure Easy to repair/re-work Low E_r – for antennas Parallel Processing Availability of new low loss organic/LCP 	 High moisture sensitivity Low wiring density High CTE CTE mismatch with die Low TC Difficult to integrate passives
Ceramic (LTCC) (MCM-C)	 Good RF, mechanical and thermal Easy integration of passives Real 3D integration/packaging capability A range of layer properties Radiation hardness, hermetic packaging CTE matches with semiconductor High resolution and trench via - PI-TF process 	 Shrinkage of substrate (zero-shrinkage process) High dielectric constant More expansive than laminates Longer lead time than laminates Difficult fine conductor or trench- filled metal-wall
IPD (MCM-D) K. Samanta, IEEE Microwave	 High geometric resolution and wiring density Low dielectric constant Easy integration of passives 	 Expensive process Limited number of layers Difficult to repair or rework

ARF

Prototype 28 GHZ Front-End Module (FEMV1) With Single PA

Possible Front-End Architectures with Filters

Basic Block Diagram of a Front-End Module (FEMV1)

Block Diagram of FEMV1

Laminate/PCB	RO4350B
Dielectric Const	3.66
TanD	0.0037
CTE (ppm/°C)	+40
TC (W/m.K)	0.69
Min thickness (um)	101

Filters Requirements and Constrains

- Specification of a filter is governed by the system specs and achievable specs of converts; harmonics from PA and antenna module.
- > Basic Requirements:
 - * Rejection of harmonics and spurious in Tx channel
 - Rejection of out of band unwanted signals in Rx channel : around 60 GHz (WLAN/WiFi) and <10 GHz (Cellular/WiFi)
- Difficulties:
 - * High dielectric, ohmic and radiation losses at mmW
 - Maintaining low IL loss of a filter across a wideband: meeting NF for Rx and o/p power for Tx

ARFTC

Low pass filter : Photograph and Measured Response

Test Results: Adapter loss = 0.2 dB + I/O Connector + line loss : ~ 1.1 dB

Filter Loss: < 1dB@28GHz

Band/High Pass Filter : Photograph and **Measured Response**

WMJ -3

WMJ -3

SPDT Switch: Measured S-

Parameters RFc to RF1 high loss & RFc to RF2 low loss

Includes line losses for modular approach

Module (with Modular Approach)

RX port

Antenna port

Measured TX Gain/IL: 20 to 35 GHz & 0.1 to 67 GHz

Includes line losses for modular approach

RX insertion loss, 0.1 to 67 GHz & Return loss

Includes line losses for modular approach

WMJ -3

Layout and Photograph of PA

Layout of PA

Photograph of PA

Measured Performance of PA

Performance of PA with Wideband DPD

Conclusions

- 5G vision for Applications and Use Cases Taking Shape
- 5G mmWave Link Budget & Possible Architectures
- A Lot of Scope for R&D Activities Relating to Front-End Implementation: novel PA topology, low loss PS and SW, efficient and low cost integration technique, compact size yet effective thermal management, innovative multiphysics analysis and modelling
- PA Techniques for Addressing Power Consumption/Efficiency
- Measured Performance for the First Prototype FEM with Modular Approach and Single PA

ARFTG

THANK You

పారుపార

